Quantum Field Theory

Set 4: solutions

Appetizer
We will use
(o) = [ d0pauBre = + al (Bre) 1)
where by x and k we denote the 4-vectors, i.e. k- =k, 2" = wt — k- . This implies
Fou(@) = 0, A, (&) = (1 o v) = / 4 (—ikya, (F)e=*" + ik,al (F)e™) — (1 o> v) (2)
Using . . L
(Olay, (k1)af (k2)|0) = =y (27) 2w 6 (k1 — ko) (3)

we thus obtain
(Ol A (@)|e(R)) = —eu(R)e* (O1Fy (@)]e(R)) = iy () — kyen(R))e—* @

These matrix elements describe how the quantum field A, is affected by the interacting with a photon. Seen the
other way around, it describes how A, (2)|0) creates a linear combination of one-photon states.

Exercise 1

The polarization of a photon of momentum £, is defined by the constraint:
ekt = 0.

Let’s define a four-vector k* with components kY = k0 and k* = —k'. Note that k* and k* form a complete basis
of the longitudinal-time subspace. In terms of k¥, k* and e, the transverse polarization vector is written as:

Koy + B\ Foe
Ei_:(gpy_ b k]_g'u )5 :5#_<k.k>k#.

Note that 5f; satisfies 5jk“ = 5,&/5“ = 0, and that these conditions are of course Lorentz-invariant because written
in terms of dot products!. Moreover, writing more explicitly k* = k°(1,7) and k* = k°(1, —) it is easy to prove
that the condition €,k" = 0 implies 9 = £ 7@ and in turn that:

Eé = 0,
ke &
k-k kO

Finally, si—k“ = sf;l;:“ = 0 implies e;"k* = 0.

. . . . o 1 0
Now consider a generic Lorentz transformation acting on 5lf and transforming it into &', = &', — fo k', We get:

0
L / Y
€0 = Eo—ﬁk’o #0,
) 1,40
VK = =gk #0.

Besides rotations, there is only one case in which the equations above are not verified (i.e. in which &’ é‘ =0, and
consequently &’ iLk;’ " = 0), namely the case of a longitudinal boost: such a boost leaves the transverse components

INotice however that the functional form of Eu in terms of the components of k, is not preserved by Lorentz transformations.



of any fourvector untouched and mixes the time and longitudinal components, which for &’ i‘ are both 0.
For generic transformation one can define:

finding:
~1 / EIO /
50 = g0 — ﬁk 0 = O,
gt o=~k = 0.
Note that in the special case of longitudinal boost one has é,f =¢ t, as can be seen from the definition of elf

replacing all fourvectors by their primed counterparts. In general, however, Lorentz transforming %—Z = Z—?) you

10 - . —
get ]’j, Z, # 5o because k' cannot be written as (kg, —&).

One important point to notice is the following. Since the condition of orthogonality (£;%"* = 0) and of null
time component (5 = 0) are not Lorentz-invariant, if an observer defines a fourvector which just contains the
two physical transverse photon polarizations, another generic observer will see that fourvector as containing three
photon polarizations, meaning that the projection on the physical subspace is an observer-dependent statement.
So when we define the vector EJ‘, we are deﬁning an object that transforms as a fourvector, but in a weak sense:

it is true that A : f; — A V€i‘ = 5 , but 5 L does not share the basic, defining property of 5#,

. If instead we want a Lorentz- tranbformed Vector which shares the same defining properties as e we have to
nnplement a nonlinear transformation Ayry, : 5# — A# kioA Vk, = 5#
At the end, as far as physical applications are concerned, these remarks, even though conceptually important, are

quite harmless since we’ll see that gauge invariance implies M*k, = 0, with M* a physical scattering amplitude,

namely the

so that M’/ i‘ = M éﬁ for all observers, but it is important to keep in mind the distinction between &’ i‘ and
éf; in cases in which even the longitudinal part enters the game.

We now decompose the transverse polarization vector €| into helicity eigenstates e+
e1(k) = cyeq(k) + c—e—(k) (5)

where
exp(—iJ -n¢)ex (k) = eT%ep (k) (6)

for i = k/|k|. We want to understand how e+ behaves under Lorentz transformations. Let us start considering

the reference frame where the photon has momentum k* = (w,0,0,w). Of course, this is not unique but it is

identified only up to a transformation of the little group. In this frame, we can chose 5’_7_(12) = %(0, —1,—-14,0)

and E’i(fc) = %(0, 1,—4,0). Under W € ISO(2) these vectors are not mapped into transverse vectors. To see this
explicitely, let us recall that every transformation of this type can be rewritten as

W(a, 8,¢) = S(a, B)R(¢) (7)

where R is a rotation around the third axis while S is generated exponentiating J!' — K? and J? + K! with
paramters o and 3. From the (1 representation of the generators it is not difficult to compute S(«, 3). The

result is L s ) L )
a2+ 8) —B o —La?+@)
—B 10 B
0 —a
3@+ 5% =B a —3(a®+ 57
Therefore, under a little group transformation, up to a phase given by the rotation, we end up with a polarization
vector shifted along the longitudinal direction

27 2)

S(a,B) = (8)

Q
[t

W(a,5.6)%, S4(F) = (e () + T2 LR )



Notice however, that €% (k) + ck is equivalent to e (k). This result shows that the (Coulomb) transversality
condition is not covariant. The general case is not different. At first, let us define the standard helicity basis
Lorentz transformation Ay which maps k into k and define ¢/ (k) = A}’ €’ (k). At this point we see that

A¥, €8 (k) = (Aar)",(Ay AAy), e () (10)
The second transformation belongs to the little group of k. Therefore, from the previous comments we find
(Apg A", e (k) = S(a(A, k), BIA, k)", R(G((A, ), (k)
N Fa(A, k) —iB(A, k) ) (11)
V2w

Fa(A, k) — iB(A, k)
V2w

Again, in the right hand side we ended up with a shifted vector which is equivalent to e (Ak).

SRRRICAD

and thus

A*, e (k) = eFioUR) (h (Ak) + (Ak)") (12)

Exercise 2

Let us consider the Lagrangian of a massive vector field:
1 1

L= 71ELVF'U‘V + §M2AMAH7

from which we can compute the conjugate momentum of the field A,:

oL
= ———— = —F%,
9(DoA,)

II° is vanishing, which is a consequence of the fact that the field Ay is not a dynamical variable. The only non
trivial quantities are then: ‘ ‘ ‘
I = —9%A4% + 9" A°.

The equations of motion following from the above Lagrangian can be divided into a set of three dynamical
equations: _ _ _ N _ o N '

0=0,F" + M?*A7 = 0oFY + 0,;F"7 + M?AT = AV — &7 Ay + 0, F7 + M* A7,
and constraint: )

0= BMF”O + M?AY — Ay = —mainly

which lets us express the non-dynamical variable as a function of the momenta. The Hamiltonian reads:
H= /d% (4, - £) = /d3x (md; - ) = /d% (—IT'TL; + 110, Ag — L)),

where in the last step we have used the definition of IT* in terms of A’. Expanding and eliminating Ag, we get

; 1, 4 i 1 ; 1 s 1

iTTi 1 i j 1 i1 ij 1 1 i
= /d?’:v (H I + W(&-H )(9;117) + iFojFOJ +7F Y - 5M2Ag - §M2AZ—A >
— /d% 1 I + i(ani)z + lF”F” + M2A'A

2 M2 2 '

In order to quantize this theory we need to impose a set of canonical commutation relations. Here a subtlety
arises since, because of the constraint relating Ay and the II*, we cannot impose a vanishing commutation relation
between all the A,. A correct set of commutation relation is instead:

[Ai(#, 1), T9(7,1)] = i6]6°(7 — 5),
[AZ(J?? t)v Aj(ﬂﬁ t)] = [Hl(f7 t)? Hj(ga t)] = [Ao(f, t)’ Hj(g’ t)] =0,

= = = 1 m( = i x =g =
A&, 1), Ao(@.0)] = | Ai(@, 1), = 5 0mIT" (7.1) = 93z — ).
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We can check the consistency of the above commutation relations considering the commutator of the field and the
momenta with the Hamiltonian. Notice that the commutation relations are defined at equal time but since H is
independent of time we can compute it at any time:

[H, TV(%,t)] = —illV(2,t) = / d3y (;F’"” [Epn(7,1), TV (Z,)] — M2A™ [A,n (7, 1), T (%, t)])
_ / dy ( F7 [0 Au(i ), T (&, 0)] — MPA™ [A(.0), TP (7,1)])

—i / dy ( FIOWEE — )~ MPAPE ) = iy, F™(E.1) M4 (3.1,

- " 3= - 1 m n -
[H, A;(#,1)] = —id;(7,t) = / &y (—Hi (10 (.0), A4;(70)] + 705 (O™ [(@m), Aj(x,t)])
PN Lo, ] )3/ PN { -
- /d3y (ij(y,t)63(:E — i)+ zw(amnma; )53 (% — y>> = i1 (@, 1) + 775050117 (&,1).
Finally taking the time derivative of the second equation and using the first we get:
Al =11 — Waoaﬁ(amnm) = I + 00 Ag = =0y F™ — M2A7 4 9907 A
= 90" A — 90’ A° + 0y, F™ + M AT = 0.

Homework

The energy momentum tensor is
v v 77‘“) a AB
T = —0MAPOY A, + 7(8(1145)(8 AP).
Using that the Lorentz generator for spin 1 fields is
(J77), = —i(dn™ = o7n"),
we then find

JO = 'OV A, + 1AV A,
S0 = —(9Y A AT 4 (Q° AT) A"

Let us first compute the explicit expressions in terms of ladder operators by using the expansion
Au(x) = /dQ,2 [a#(k‘,t) +aL(—k,t)] ke,
The first piece of LV is

- / Prrt AP A, = / P~z / dQ(—iko) [aV(E, t) —a' (=, t)] etF® / dQ(—ip?) [ay (5, t) + al (=P, 1)] €7

Using 2%eP% = _ia?;i e'P and integrating by parts, we find

/ / 40,40 / P D (i) [a7 () — a7 F(-F, )] <—¢;pi> [y (7.) + al(~F.0)] (~ip?).

The integral over d®z gives (27)362%(p + E), thus recalling the form of the measure d€2;; = %:(372%3, we arrive at

O i [ay(F.t) + ! (<5.0)] -

N i . .
- / Brrt AP A, = / Q5 [a7(=p,t) — a1 (5, 1)] oy
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Similarly

/d% I AVOA, = —/daﬁé [a?(=p,t) — a1 (5, 1)] ay(Brt) + al (=5 1)] -

apr”
Whence we get

J”:z/dQ a'”ﬁ)[ ——p ai] (D).

The computation of the spin part is easier. With similar steps we find

—/d%(a(’Ai)Aﬂ' = /dﬂﬁg [a'(P,t) — a' T (=5, 1)] [a? (-5, t) +a? T (5, 1)]

/d?’x(aOAJ‘)Ai = —/dﬂﬁ% [a? (5,t) — a1 (=p,t)] [a' (=P, t) + a' T (5, 1)] .
Then we conclude

5 = ~i [ a0y 0" () () — o (e’ ().

As in exercise 1, consider now L(§) = g,a”(§). The total angular momentum is a physical observable, hence we
expect [L, M) < L. However the same must not be necessarily true for the orbital and spin part alone. To see if
this is the case let us compute the commutator of L(¢) with J* and S™. Take J* first:

L@ = [ a0, (0@, @) |15~ 9|

= iq" [ aaa_qa(ﬂ (@)

9, 0 .y 4
=il = | 1@ i [0y (@)
In passing from the first to the second line we used the commutation relation [a, (7), al,(7)] = —1,,2q0(27)36% (- —k),
while in the last we used? [q”, a%j} =0 - (533—;.

Let us now do the same computation for the spin:

[L(q), 5] = *i/dQﬁqp{[ap((T),a”(@] a (p) — [a,(7). &’ (§)] @' () }
=i[d’a'(q) - d'a’(q)] -
Using a*(§) = —a;(q), we finally find

L@ M) = a5~ o | L)

Then, defining L(q) = L(q)e""t, we get:
L(x) = 0" A7 (x) = / 0 e LG —  [D(x), M) = —i(s'0; — 270, L(x).

We thus conclude that M%¥ is a well defined observable, but nor .J¥ nor S% are alone. In particular the spin of
the photon is not a well defined observable. Notice however that we can define the following helicity operator:

h = fiqjk/dQ,ya”(ﬁ)aj (P)p~.

For single particle states this measures the projection of S¥ = le;;.S% onto the direction of the momentum, i.e.
2 €ij

h=yp- S. Then the same computation done before shows
[L(@), h] = ieijra’a’(@)g" = 0.

This hence shows that the operator h is a well defined observable. In other words the spin of a photon cannot be

measured, while the helicity can®.

2This can be proved taking into account that g is on-shell, so gij = qé .

3This result could have been expected; see Weinberg 2.5, single particle states.
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