
Quantum Field Theory

Set 4: solutions

Appetizer

We will use

Aµ(x) =

∫
dΩk⃗(aµ(k⃗)e

−ik·x + a†µ(k⃗)e
ik·x) (1)

where by x and k we denote the 4-vectors, i.e. k · x = kµx
µ = ωt− k⃗ · x⃗. This implies

Fµν(x) = ∂µAν(x)− (µ ↔ ν) =

∫
dΩk⃗(−ikµaν(k⃗)e

−ik·x + ikµa
†
ν(k⃗)e

ik·x)− (µ ↔ ν) (2)

Using
⟨0|aµ(k⃗1)a†ν(k⃗2)|0⟩ = −ηµν(2π)

32ωk⃗δ
(3)(k⃗1 − k⃗2) (3)

we thus obtain

⟨0|Aµ(x)|ϵ(k⃗)⟩ = −ϵµ(k⃗)e
−ik·x ⟨0|Fµν(x)|ϵ(k⃗)⟩ = i(kµϵν(k⃗)− kνϵµ(k⃗))e

−ik·x (4)

These matrix elements describe how the quantum field Aµ is affected by the interacting with a photon. Seen the
other way around, it describes how Aµ(x)|0⟩ creates a linear combination of one-photon states.

Exercise 1

The polarization of a photon of momentum kµ is defined by the constraint:

εµk
µ = 0.

Let’s define a four-vector k̄µ with components k̄0 = k0 and k̄i = −ki. Note that kµ and k̄µ form a complete basis
of the longitudinal-time subspace. In terms of kµ, k̄µ and εµ, the transverse polarization vector is written as:

ε⊥µ =

(
gµν − kµk̄ν + k̄µkν

k · k̄

)
εν = εµ −

(
k̄ · ε
k̄ · k

)
kµ.

Note that ε⊥µ satisfies ε⊥µ k
µ = ε⊥µ k̄

µ = 0, and that these conditions are of course Lorentz-invariant because written

in terms of dot products1. Moreover, writing more explicitly kµ = k0(1, n⃗) and k̄µ = k0(1,−n⃗) it is easy to prove
that the condition εµk

µ = 0 implies ε0 = ε⃗ · n⃗ and in turn that:

ε⊥0 = 0,

k̄ · ε
k̄ · k

=
ε0

k0
.

Finally, ε⊥µ k
µ = ε⊥µ k̄

µ = 0 implies ε⊥i k
i = 0.

Now consider a generic Lorentz transformation acting on ε⊥µ and transforming it into ε′
⊥
µ = ε′µ − ε0

k0 k
′
µ. We get:

ε′
⊥
0 = ε′0 −

ε0

k0
k′0 ̸= 0,

ε′
⊥
i k

′i = −ε′
⊥
0 k

′0 ̸= 0.

Besides rotations, there is only one case in which the equations above are not verified (i.e. in which ε′
⊥
0 = 0, and

consequently ε′
⊥
i k

′i = 0), namely the case of a longitudinal boost: such a boost leaves the transverse components

1Notice however that the functional form of k̄µ in terms of the components of kµ is not preserved by Lorentz transformations.



of any fourvector untouched and mixes the time and longitudinal components, which for ε′
⊥
µ are both 0.

For generic transformation one can define:

ε̃⊥µ ≡ ε′
⊥
µ +

(
ε0

k0
− ε′

0

k′0

)
k′µ,

finding:

ε̃⊥0 = ε′0 −
ε′

0

k′0
k′0 = 0,

ε̃⊥i k
′i = −ε̃⊥0 k

′0 = 0.

Note that in the special case of longitudinal boost one has ε̃⊥µ = ε′
⊥
µ , as can be seen from the definition of ε⊥µ

replacing all fourvectors by their primed counterparts. In general, however, Lorentz transforming k̄·ε
k̄·k = ε0

k0 you

get k̄′·ε′
k̄′·k′ ̸= ε′0

k′0 because k̄′ cannot be written as (k′0,−k⃗′).

One important point to notice is the following. Since the condition of orthogonality (ε̃⊥i k
′i = 0) and of null

time component (ε̃⊥0 = 0) are not Lorentz-invariant, if an observer defines a fourvector which just contains the
two physical transverse photon polarizations, another generic observer will see that fourvector as containing three
photon polarizations, meaning that the projection on the physical subspace is an observer-dependent statement.
So when we define the vector ε⊥µ , we are defining an object that transforms as a fourvector, but in a weak sense:

it is true that Λ : ε⊥µ → Λ ν
µ ε⊥ν ≡ ε′

⊥
µ , but ε′

⊥
µ does not share the basic, defining property of ε⊥µ , namely the

’⊥’. If instead we want a Lorentz-transformed vector which shares the same defining properties as ε⊥µ we have to

implement a nonlinear transformation ΛNL : ε⊥µ → Λ ν
µ ε⊥ν − ε′0

k′0Λ
ν
µ kν ≡ ε̃⊥µ .

At the end, as far as physical applications are concerned, these remarks, even though conceptually important, are
quite harmless since we’ll see that gauge invariance implies Mµkµ = 0, with Mµ a physical scattering amplitude,

so that M ′µε′
⊥
µ = M ′µε̃⊥µ for all observers, but it is important to keep in mind the distinction between ε′

⊥
µ and

ε̃⊥µ in cases in which even the longitudinal part enters the game.

We now decompose the transverse polarization vector ε⊥ into helicity eigenstates ε±

ε⊥(k) = c+ε+(k) + c−ε−(k) (5)

where
exp(−iJ · n̂ϕ)ε±(k) = e∓iϕε±(k) (6)

for n̂ = k/|k|. We want to understand how ε± behaves under Lorentz transformations. Let us start considering
the reference frame where the photon has momentum k̃µ = (ω, 0, 0, ω). Of course, this is not unique but it is
identified only up to a transformation of the little group. In this frame, we can chose εµ+(k̃) = 1√

2
(0,−1,−i, 0)

and εµ−(k̃) =
1√
2
(0, 1,−i, 0). Under W ∈ ISO(2) these vectors are not mapped into transverse vectors. To see this

explicitely, let us recall that every transformation of this type can be rewritten as

W (α, β, ϕ) = S(α, β)R(ϕ) (7)

where R is a rotation around the third axis while S is generated exponentiating J1 − K2 and J2 + K1 with
paramters α and β. From the ( 12 ,

1
2 ) representation of the generators it is not difficult to compute S(α, β). The

result is

S(α, β) =


1
2 (α

2 + β2) −β α − 1
2 (α

2 + β2)
−β 1 0 β
α 0 1 −α

1
2 (α

2 + β2) −β α − 1
2 (α

2 + β2)

 (8)

Therefore, under a little group transformation, up to a phase given by the rotation, we end up with a polarization
vector shifted along the longitudinal direction

W (α, β, ϕ)µν ε
ν
±(k̃) = e∓iϕ(εµ±(k̃) +

∓α− iβ√
2ω

k̃µ) (9)
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Notice however, that εµ±(k̃) + ck̃µ is equivalent to εµ±(k̃). This result shows that the (Coulomb) transversality
condition is not covariant. The general case is not different. At first, let us define the standard helicity basis
Lorentz transformation Λk which maps k̃ into k and define εµ±(k) = Λµ

k ν ε
ν
±(k̃). At this point we see that

Λµ
ν ε

ν
±(k) = (ΛΛk)

µ
ρ(Λ

−1
Λk ΛΛk)

ρ
ν ε

ν
±(k̃) (10)

The second transformation belongs to the little group of k̃. Therefore, from the previous comments we find

(Λ−1
Λk ΛΛk)

µ
ν ε

ν
±(k̃) = S(α(Λ, k̃), β(Λ, k̃))µρR(ϕ((Λ, k̃)))ρνε

ν
±(k̃)

= e∓iϕ(Λ,k̃)(εµ±(k̃) +
∓α(Λ, k̃)− iβ(Λ, k̃)√

2ω
k̃µ)

(11)

and thus

Λµ
ν ε

ν
±(k) = e∓iϕ(Λ,k̄)(εµ±(Λk) +

∓α(Λ, k̄)− iβ(Λ, k̄)√
2ω

(Λk)µ) (12)

Again, in the right hand side we ended up with a shifted vector which is equivalent to εµ±(Λk).

Exercise 2

Let us consider the Lagrangian of a massive vector field:

L = −1

4
FµνF

µν +
1

2
M2AµA

µ,

from which we can compute the conjugate momentum of the field Aµ:

Πµ =
∂L

∂(∂0Aµ)
= −F 0µ.

Π0 is vanishing, which is a consequence of the fact that the field A0 is not a dynamical variable. The only non
trivial quantities are then:

Πi = −∂0Ai + ∂iA0.

The equations of motion following from the above Lagrangian can be divided into a set of three dynamical
equations:

0 = ∂µF
µj +M2Aj = ∂0F

0j + ∂iF
ij +M2Aj = Äj − ∂jȦ0 + ∂iF

ij +M2Aj ,

and constraint:

0 = ∂µF
µ0 +M2A0 =⇒ A0 = − 1

M2
∂iΠ

i,

which lets us express the non-dynamical variable as a function of the momenta. The Hamiltonian reads:

H =

∫
d3x

(
ΠµȦµ − L

)
=

∫
d3x

(
ΠiȦi − L

)
=

∫
d3x

(
−ΠiΠi +Πi∂iA0 − L

)
,

where in the last step we have used the definition of Πi in terms of Ȧi. Expanding and eliminating A0, we get

H =

∫
d3x

(
−ΠiΠi −

1

M2
Πi∂i(∂jΠ

j)− L
)

=

∫
d3x

(
−ΠiΠi −

1

M2
Πi∂i(∂jΠ

j) +
1

4
FµνF

µν − 1

2
M2AµA

µ

)
=

∫
d3x

(
ΠiΠi +

1

M2
(∂iΠ

i)(∂jΠ
j) +

1

2
F0jF

0j +
1

4
FijF

ij − 1

2
M2A2

0 −
1

2
M2AiA

i

)
=

∫
d3x

1

2

(
ΠiΠi +

1

M2
(∂iΠ

i)2 +
1

2
F ijF ij +M2AiAi

)
.

In order to quantize this theory we need to impose a set of canonical commutation relations. Here a subtlety
arises since, because of the constraint relating A0 and the Πi, we cannot impose a vanishing commutation relation
between all the Aµ. A correct set of commutation relation is instead:[

Ai(x⃗, t), Π
j(y⃗, t)

]
= iδji δ

3(x⃗− y⃗),

[Ai(x⃗, t), Aj(y⃗, t)] =
[
Πi(x⃗, t), Πj(y⃗, t)

]
=
[
A0(x⃗, t), Π

j(y⃗, t)
]
= 0,

[Ai(x⃗, t), A0(y⃗, t)] =

[
Ai(x⃗, t), −

1

M2
∂mΠm(y⃗, t)

]
=

i

M2
∂
(x)
i δ3(x⃗− y⃗).
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We can check the consistency of the above commutation relations considering the commutator of the field and the
momenta with the Hamiltonian. Notice that the commutation relations are defined at equal time but since H is
independent of time we can compute it at any time:

[
H, Πj(x⃗, t)

]
≡ −iΠ̇j(x⃗, t) =

∫
d3y

(
1

2
Fmn

[
Fmn(y⃗, t), Π

j(x⃗, t)
]
−M2Am

[
Am(y⃗, t), Πj(x⃗, t)

])
=

∫
d3y

(
Fmn

[
∂(y)
m An(y⃗, t), Π

j(x⃗, t)
]
−M2Am

[
Am(y⃗, t), Πj(x⃗, t)

])
= i

∫
d3y

(
Fmj∂(y)

m δ3(x⃗− y⃗)−M2Ajδ3(x⃗− y⃗)
)
= −i∂m Fmj(x⃗, t)− iM2Aj(x⃗, t),

[H, Aj(x⃗, t)] ≡ −iȦj(x⃗, t) =

∫
d3y

(
−Πi

[
Πi(y⃗, t), Aj(x⃗, t)

]
+

1

M2
(∂(y)

m Πm)
[
(∂(y)

n Πn), Aj(x⃗, t)
])

=

∫
d3y

(
iΠj(y⃗, t)δ

3(x⃗− y⃗) + i
1

M2
(∂mΠm)∂

(x)
j δ3(x⃗− y⃗)

)
= iΠj(x⃗, t) +

i

M2
∂j(∂mΠm)(x⃗, t).

Finally taking the time derivative of the second equation and using the first we get:

Äj = −Π̇j − 1

M2
∂0∂

j(∂mΠm) = −Π̇j + ∂0∂
jA0 = −∂m Fmj −M2Aj + ∂0∂

jA0

=⇒ ∂0∂
0Aj − ∂0∂

jA0 + ∂m Fmj +M2Aj = 0.

Homework

The energy momentum tensor is

Tµν = −∂µAρ∂νAρ +
ηµν

2
(∂αAβ)(∂

αAβ).

Using that the Lorentz generator for spin 1 fields is

(J ρσ)
γ
ν = −i(δρνη

σγ − δσν η
ργ),

we then find

J0ij = −xi∂0Aγ∂jAγ + xj∂0Aγ∂iAγ ,

S0ij = −(∂0Ai)Aj + (∂0Aj)Ai.

Let us first compute the explicit expressions in terms of ladder operators by using the expansion

Aµ(x) =

∫
dΩk⃗

[
aµ(k⃗, t) + a†µ(−k⃗, t)

]
eik⃗·x⃗.

The first piece of Lij is

−
∫

d3xxiȦγ∂jAγ =

∫
d3x(−xi)

∫
dΩk⃗(−ik0)

[
aγ(k⃗, t)− aγ †(−k⃗, t)

]
eik⃗·x⃗

∫
dΩp⃗(−ipj)

[
aγ(p⃗, t) + a†γ(−p⃗, t)

]
eip⃗·x⃗.

Using xieip⃗·x⃗ = −i ∂
∂pi e

ip⃗·x⃗ and integrating by parts, we find∫∫
dΩk⃗dΩp⃗

∫
d3xei(k⃗+p⃗)·x⃗(−ik0)

[
aγ(k⃗, t)− aγ †(−k⃗, t)

](
−i

∂

∂pi

)[
aγ(p⃗, t) + a†γ(−p⃗, t)

]
(−ipj).

The integral over d3x gives (2π)3δ2(p⃗+ k⃗), thus recalling the form of the measure dΩk⃗ = d3k
2k0(2π)3

, we arrive at

−
∫

d3xxiȦγ∂jAγ =

∫
dΩp⃗

i

2

[
aγ(−p⃗, t)− aγ †(p⃗, t)

] ∂

∂pi
pj
[
aγ(p⃗, t) + a†γ(−p⃗, t)

]
.
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Similarly ∫
d3xxjȦγ∂iAγ = −

∫
dΩp⃗

i

2

[
aγ(−p⃗, t)− aγ †(p⃗, t)

] ∂

∂pj
pi
[
aγ(p⃗, t) + a†γ(−p⃗, t)

]
.

Whence we get

J ij = i

∫
dΩp⃗ a

γ †(p⃗)

[
pi

∂

∂pj
− pj

∂

∂pi

]
aγ(p⃗).

The computation of the spin part is easier. With similar steps we find

−
∫

d3x(∂0Ai)Aj =

∫
dΩp⃗

i

2

[
ai(p⃗, t)− ai †(−p⃗, t)

] [
aj(−p⃗, t) + aj †(p⃗, t)

]
,∫

d3x(∂0Aj)Ai = −
∫

dΩp⃗
i

2

[
aj(p⃗, t)− aj †(−p⃗, t)

] [
ai(−p⃗, t) + ai †(p⃗, t)

]
.

Then we conclude

Sij = −i

∫
dΩp⃗

[
ai †(p⃗)aj(p⃗)− aj †(p⃗)ai(p⃗)

]
.

As in exercise 1, consider now L(q⃗) = qρa
ρ(q⃗). The total angular momentum is a physical observable, hence we

expect [L,M ij ] ∝ L. However the same must not be necessarily true for the orbital and spin part alone. To see if
this is the case let us compute the commutator of L(q⃗) with J ij and Sij . Take J ij first:

[L(q⃗), J ij ] = i

∫
dΩp⃗ qρ

[
aρ(q⃗), aγ †(p⃗)

] [
pi

∂

∂pj
− pj

∂

∂pi

]
aγ(p⃗)

= iqγ
[
qi

∂

∂qj
− qj

∂

∂qi

]
aγ(q⃗)

= i

[
qi

∂

∂qj
− qj

∂

∂qi

]
L(q⃗)− i

[
qiaj(q⃗)− qjai(q⃗)

]
.

In passing from the first to the second line we used the commutation relation [aµ(p⃗), a
†
ν(q⃗)] = −ηµν2q0(2π)

3δ3(p⃗−k⃗),

while in the last we used2
[
qγ , ∂

∂qj

]
= −δγj − δγ0

qj

q0 .

Let us now do the same computation for the spin:

[L(q⃗), Sij ] = −i

∫
dΩp⃗ q

ρ
{[

aρ(q⃗), a
i †(p⃗)

]
aj(p⃗)−

[
aρ(q⃗), a

j †(p⃗)
]
ai(p⃗)

}
= i
[
qjai(q⃗)− qiaj(q⃗)

]
.

Using ai(q⃗) = −ai(q⃗), we finally find

[L(q⃗),M ij ] = i

[
qi

∂

∂qj
− qj

∂

∂qi

]
L(q⃗).

Then, defining L(q) = L(q⃗)e−iq0t, we get:

L(x) = ∂µA−
µ (x) =

∫
dΩq⃗ e−iqxL(q⃗) =⇒ [L(x),M ij ] = −i(xi∂j − xj∂i)L(x).

We thus conclude that M ij is a well defined observable, but nor J ij nor Sij are alone. In particular the spin of
the photon is not a well defined observable. Notice however that we can define the following helicity operator:

h = −iϵijk

∫
dΩp⃗a

i †(p⃗)aj(p⃗)pk.

For single particle states this measures the projection of Sk = 1
2ϵijkS

ij onto the direction of the momentum, i.e.

h = p⃗ · S⃗. Then the same computation done before shows

[L(q⃗), h] = iϵijkq
jai(q⃗)qk = 0.

This hence shows that the operator h is a well defined observable. In other words the spin of a photon cannot be
measured, while the helicity can3.

2This can be proved taking into account that q is on-shell, so ∂q0

∂qj
= qj

q0
.

3This result could have been expected; see Weinberg 2.5, single particle states.
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